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Background: In 2019, the Open Pediatric Brain Tumor Atlas (OpenPBTA) was created as a global,
collaborative open-science initiative to genomically characterize 1,074 pediatric brain tumors and 22
patient-derived cell lines. Here, we present an extension of the OpenPBTA called the Open Pediatric
Cancer (OpenPedCan) Project, a harmonized open-source multi-omic dataset from 6,112 pediatric
cancer patients with 7,096 tumor events across more than 100 histologies. Combined with RNA-Seq
from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA), OpenPedCan
contains nearly 48,000 total biospecimens (24,002 tumor and 23,893 normal specimens).

Findings: We utilized Gabriella Miller Kids First (GMKF) work�ows to harmonize WGS, WXS, RNA-seq,
and Targeted Sequencing datasets to include somatic SNVs, InDels, CNVs, SVs, RNA expression,
fusions, and splice variants. We integrated summarized CPTAC whole cell proteomics and phospho-
proteomics data, miRNA-Seq data, and have developed a methylation array harmonization work�ow
to include m-values, beta-vales, and copy number calls. OpenPedCan contains reproducible,
dockerized work�ows in GitHub, CAVATICA, and Amazon Web Services (AWS) to deliver harmonized
and processed data from over 60 scalable modules which can be leveraged both locally and on AWS.
The processed data are released in a versioned manner and accessible through CAVATICA or AWS S3
download (from GitHub), and queryable through PedcBioPortal and the NCI’s pediatric Molecular
Targets Platform. Notably, we have expanded PBTA molecular subtyping to include methylation
information to align with the WHO 2021 Central Nervous System Tumor classi�cations, allowing us to
create research-grade integrated diagnoses for these tumors.

Conclusions: OpenPedCan data and its reproducible analysis module framework are openly available
and can be utilized and/or adapted by researchers to accelerate discovery, validation, and clinical
translation.

Keywords

Pediatric cancer, open science, reproducibility, multi-omics, Docker, OpenPedCan

Data Description

The Open Pediatric Cancer (OpenPedCan) project is an iterative open analysis e�ort in which we
harmonize pediatric cancer data from multiple sources, perform downstream cancer analyses on
these data, and provide them through Amazon S3, CAVATICA, PedcBioPortal, and v2.1 of NCI’s
Pediatric Molecular Targets Platform (MTP). We harmonized, aggregated, and analyzed data from
multiple pediatric and adult data sources, building upon the work of the OpenPBTA (Figure 1). All
RNA-seq and DNA-seq data from OpenPBTA were updated from GENCODE v27 to GENCODE v39 as
part of the OpenPedCan project. Further, all data within OpenPedCan is harmonized with GENCODE
v39 annotations. Biospecimen-level metadata and clinical data are contained in Supplemental Table
1.

https://moleculartargets.ccdi.cancer.gov/
https://github.com/d3b-center/OpenPedCan-analysis/blob/b7b51c5e2b0a91f67cf2c86da7f0b6932878a370/tables/results/SuppTable1-Histologies.xlsx


Figure 1:  OpenPedCan Data. A, OpenPedCan contains multi-omic data from seven cohorts of pediatric tumors (A-B)
with counts by tumor event, RNA-Seq from adult tumors from The Cancer Genome Atlas (TCGA) Program (C-D) and RNA-
Seq from normal adult tissues from the Genotype-Tissue Expression (GTeX) project (E) with counts by specimen.
(Abbreviations: TARGET = Therapeutically Applicable Research to Generate E�ective Treatments , PPTC = Pediatric
Preclinical Testing Consortium, PBTA = Pediatric Brain Tumor Atlas, Maris = Neuroblastoma cell lines from the Maris
Laboratory at CHOP, GMKF = Gabriella Miller Kids First, DGD = Division of Genomic Diagnostics at CHOP, CPTAC =
Clinical Proteomic Tumor Analysis Consortium)

OpenPedCan currently include the following datasets, described more fully below:

OpenPBTA
TARGET
Kids First Neuroblastoma (X01)
Kids First PBTA (X01)
Chordoma Foundation
PPTC
Maris
MI-ONCOSEQ Study
DGD
GTEx
TCGA
CPTAC PBTA
CPTAC GBM
HOPE proteomics

Open Pediatric Brain Tumor Atlas (OpenPBTA)

In September of 2018, the Children’s Brain Tumor Network (CBTN) released the Pediatric Brain Tumor
Atlas (PBTA), a genomic dataset (whole genome sequencing, whole exome sequencing, RNA
sequencing, proteomic, and clinical data) for nearly 1,000 tumors, available from the Gabriella Miller
Kids First Portal. In September of 2019, the Open Pediatric Brain Tumor Atlas (OpenPBTA) Project was

https://cbtn.org/
https://cbtn.org/pediatric-brain-tumor-atlas/
https://kidsfirstdrc.org/


launched. OpenPBTA was a global open science initiative to comprehensively de�ne the molecular
landscape of tumors of 943 patients from the CBTN and the PNOC003 DIPG clinical trial from the
Pediatric Paci�c Neuro-oncology Consortium through real-time, collaborative analyses and
collaborative manuscript writing on GitHub [1]. Additional PBTA data has been, and will be continually
added to, OpenPedCan.

Therapeutically Applicable Research to Generate E�ective Treatments (TARGET)

The Therapeutically Applicable Research to Generate E�ective Treatments (TARGET) Initiative is an
NCI-funded collection of disease-speci�c projects that seeks to identify the genomic changes of
pediatric cancers. The overall goal is to collect genomic data to accelerate the development of more
e�ective therapies. OpenPedCan analyses include newly harmonized, open-access data associated
with the seven diseases present in the TARGET dataset: Acute Lymphoblastic Leukemia (ALL), Acute
Myeloid Leukemia (AML), Clear cell sarcoma of the kidney, Neuroblastoma, Osteosarcoma, Rhabdoid
tumor, and Wilm’s Tumor.

Gabriella Miller Kids First (Neuroblastoma) and PBTA

The Gabriella Miller Kids First Pediatric Research Program (Kids First) is a large-scale e�ort to
accelerate research and gene discovery in pediatric cancers and structural birth defects. The program
includes whole genome sequencing (WGS) from patients with pediatric cancers and structural birth
defects and their families. OpenPedCan analyses include Neuroblastoma and PBTA data from the Kids
First projects.

Chordoma Foundation

The Chordoma Foundation seeks to advance research and improve healthcare for patients diagnosed
with chordoma and has shared patient and model sequencing data with the CBTN.

Pediatric Preclinical Testing Consortium (PPTC)

The National Cancer Institute’s (NCI) former PPTC, now the Pediatric Preclinical in Vivo Testing (PIVOT)
Program, molecularly and pharmacologically characterizes cell-derived and patient-derived xenograft
(PDX) models. OpenPedCan includes re-harmonized RNA-Seq data for 244 models from the initial
PPTC study [2]. A subset of PPTC includes neuroblastoma models; the Maris  cohort includes re-
harmonized RNA-Seq data for 39 neuroblastoma cell lines [3], some of which have corresponding PDX
models within the PPTC.

MI-ONCOSEQ Study [4]

These clinical sequencing data from the University of Michigan were donated to CBTN and added to
the PBTA cohort.

Division of Genomic Diagnostics at Children’s Hospital of Philadelphia (DGD)

CHOP’s Division of Genomic Diagnostics has partnered with CCDI to add somatic panel sequencing
data to OpenPedCan and the Molecular Targets Platform.

The Genotype-Tissue Expression Project (GTEx)

The GTEx project is an ongoing e�ort to build a comprehensive public data resource and tissue bank
to study tissue-speci�c gene expression, regulation and their relationship with genetic variants.
Samples were collected from 54 non-diseased tissue sites across nearly 1000 individuals, primarily for

http://www.pnoc.us/
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000218.v23.p8
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001436.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002517.v2.p2
https://www.chordomafoundation.org/
file:///converted/@https://ctep.cancer.gov/MajorInitiatives/Pediatric_PIVOT_Program.htm%5D
https://preclinicalpivot.org/about-pivot/
https://www.chop.edu/cancer-panels
https://www.chop.edu/centers-programs/division-genomic-diagnostics
https://gtexportal.org/home/


molecular assays including WGS, WXS, and RNA-Seq. OpenPedCan project includes 17,382 GTEx RNA-
Seq samples from GTEx v8 release, which span across 31 GTEx groups in the v12 release.

The Cancer Genome Atlas Program (TCGA)

TCGA is a landmark cancer genomics program that molecularly characterized over 20,000 primary
cancer and matched normal samples spanning 33 cancer types. It is a joint e�ort between NCI and the
National Human Genome Research Institute. OpenPedCan project includes open-access 10,414 RNA-
Seq for 716 normal and 9,698 TCGA tumor samples from 33 cancer types.

Clinical Proteomic Tumor Analysis Consortium (CPTAC) PBTA proteomics study

The CPTAC pediatric pan-brain tumor study [5] contains 218 tumors pro�led by proteogenomics and
are included in OPC.

CPTAC adult GBM proteomics study

This CPTAC adult GBM study [6] contains 99 tumors pro�led by proteogenomics and are included in
OPC.

Project HOPE proteomics study

Project HOPE is an adolescent and young adult high-grade glioma study (in preparation for
publication) that contains 90 tumors pro�led by proteogenomics and are included in OPC.

OpenPedCan represents a substantial expansion since the OpenPBTA, both in cohort size and in data
modality integration. By incorporating methylation, proteomics, splicing, and reference datasets, and
enabling reproducible analyses across more than 48,000 biospecimens, OpenPedCan delivers a
uniquely scalable and reusable resource for pediatric cancer research.

Context

Creation of this dataset had multiple motivations. First, we sought to harmonize, summarize, and
contextualize pediatric cancer genomics data among normal tissues (GTEx) and adult cancer tissues
(TCGA) to enable the creation of the National Cancer Institute’s Molecular Targets Platform (MTP) at
https://moleculartargets.ccdi.cancer.gov/. The inclusion of harmonized GTEx and adult TCGA data
speci�cally allows for the identi�cation of genes and/or transcripts expressed in a tumor-speci�c
and/or pediatric tumor-speci�c manner. Next, we created this resource for broad community use to
promote rapid reuse and accelerate the discovery of additional mechanisms contributing to the
pathogenesis of pediatric cancers and/or to identify novel candidate therapeutic targets for pediatric
cancer.

Similar to OpenPBTA, OpenPedCan operates on a pull request model to accept contributions. We set
up continuous integration software via GitHub Actions to con�rm the reproducibility of analyses
within the project’s Docker container. We maintained a data release folder on Amazon S3,
downloadable directly from S3 or our open-access CAVATICA project, with merged �les for each
analysis. As we produced new results, identi�ed data issues, or added additional data, we created new
data releases in a versioned manner. The project maintainers have included engineers and scientists
from the Children’s Hospital of Philadelphia and Children’s National Hospital.

Methods

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000178.v11.p8
https://github.com/d3b-center/OpenPedCan-analysis/blob/dev/analyses/molecular-subtyping-integrate/results/tcga_cancer_groups.tsv
https://www.chop.edu/
https://www.childrensnational.org/


An overview of the OpenPedCan methods is depicted in Figure 2. Brie�y, most primary data
harmonization analysis work�ows were performed with Kids First pipelines written in Common
Work�ow Language (CWL) using CAVATICA (detailed below). Alignment and expression quanti�cation
for GTEx and TCGA RNA-Seq was performed by the respective consortium. Custom python, R, and/or
bash scripts were then created in OpenPedCan using the primary harmonized output �les.

Figure 2:  OpenPedCan Analysis Work�ow. Depicted are the datasets (yellow, orange, and grey) contained within
OpenPedCan. These datasets are made available in a harmonized manner through primary analysis work�ows (blue) for
DNA, RNA, and/or proteogenomics data. Files derived from the primary analysis work�ows (green) are released within
OpenPedCan. Additional analysis modules developed within OpenPedCan (red) also generate results �les (green) which
are released within OpenPedCan.

Sample Details

A list of all biospecimens and associated metadata can be found in Supplemental Table 1.

Nucleic acids extraction and library preparation (PBTA X01 and miRNA-Seq)

For detailed methods about the OpenPBTA cohort, please refer to the manuscript [1]. For the PBTA
X01 cohort, libraries were prepped using the Illumina TruSeq Strand-Speci�c Protocol to pull out poly-
adenylated transcripts.

cDNA Library Construction

Total RNA was quanti�ed using the Quant-iT RiboGreen RNA Assay Kit and normalized to 5ng/ul.
Following plating, 2 uL of ERCC controls (using a 1:1000 dilution) were spiked into each sample. An
aliquot of 325 ng for each sample was transferred into library preparation. The resultant 400bp cDNA
went through dual-indexed library preparation: ‘A’ base addition, adapter ligation using P7 adapters,
and PCR enrichment using P5 adapters. After enrichment, the libraries were quanti�ed using Quant-iT

https://github.com/d3b-center/OpenPedCan-analysis/blob/b7b51c5e2b0a91f67cf2c86da7f0b6932878a370/tables/results/SuppTable1-Histologies.xlsx


PicoGreen (1:200 dilution). Samples were normalized to 5 ng/uL. The sample set was pooled and
quanti�ed using the KAPA Library Quanti�cation Kit for Illumina Sequencing Platforms.

miRNA Extraction and Library Preparation

Total RNA for CBTN samples was extracted as described in OpenPBTA [1] and prepared according to
the HTG Edge Seq protocol for the extracted RNA miRNA Whole transcriptome assay (WTA). 15ng of
RNA were mixed in 25ul of lysis bu�er, which were then loaded onto a 96-well plate. Human Fetal
Brain Total RNA (Takara Bio USA, #636526) and Human Brain Total RNA (Ambion, Inc., Austin, TX, USA)
were used as controls. The plate was loaded into the HTG EdgeSeq processor along with the miRNA
WTA assay reagent pack. Samples were processed for 18-20 hours, then were barcoded and ampli�ed
using a unique forward and reverse primer combination. PCR settings used for barcoding and
ampli�cation were 95C for 4 min, 16 cycles of (95C for 15 sec, 56C for 45 sec, 68C for 45 sec), and 68C
for 10 min. Barcoded and ampli�ed samples were cleaned using AMPure magnetic beads (Ampure
XP,Cat# A63881). Libraries were quanti�ed using the KAPA Biosystem assay qPCR kit (Kapa Biosystems
Cat#KK4824) and CT values were used to determine the pM concentration of each library.

Data generation

PBTA X01 Illumina Sequencing Pooled libraries were normalized to 2nM and denatured using 0.1 N
NaOH prior to sequencing. Flowcell cluster ampli�cation and sequencing were performed according
to the manufacturer’s protocols using the NovaSeq 6000. Each run was a 151bp paired-end with an
eight-base index barcode read. Data was analyzed using the Broad Picard Pipeline which includes de-
multiplexing and data aggregation.

PBTA miRNA Sequencing Libraries were pooled, denatured, and loaded onto sequencing cartridge.
Libraries were sequenced using an Illumina Nextseq 500 per manufacturer guidelines. FASTQ �les
were generated from raw sequencing data using Illumina BaseSpace and analyzed with the HTG
EdgeSeq Parser software v5.4.0.7543 to generate an excel �le containing quanti�cation of 2083
miRNAs per sample. Any sample that did not pass the quality control set by the HTG REVEAL software
version 2.0.1 (Tuscon, AR, USA) was excluded from the analysis.

Primary Work�ows through Kids First

DNA WGS Alignment and SNP Calling

Please refer to the OpenPBTA manuscript for details on DNA WGS Alignment, prediction of
participants’ genetic sex, and SNP calling for B-allele Frequency (BAF) generation. [1].

Somatic Mutation and INDEL Calling

For matched tumor/normal samples, we used the same mutation calling methods as described in
OpenPBTA manuscript for details [1]. For tumor only samples, we ran Mutect2 from GATK v4.2.2.0
using the following work�ow.

VCF annotation and MAF creation

Somatic variants were annotated by the Ensembl Variant E�ect Predictor (VEP v105) [7]. From tumor
only variant calls, we removed variants with alt_depth == 0  or t_depth < 4 .

Consensus SNV Calling (tumor/normal only)

https://github.com/kids-first/kf-tumor-workflow/tree/v0.3.0-beta


We adopted the consensus SNV calling method described in OpenPBTA manuscript with adjustment
[1]. For SNV calling, we combined four consensus SNV calling algorithms: Strelka2[8], Mutect2[9],
Lancet[10], and VarDict[11].

Strelka2 outputs multi-nucleotide polymorphisms (MNPs) as consecutive single-nucleotide
polymorphisms. In order to preserve MNPs, we gather MNP calls from the other caller inputs, and
search for evidence supporting these consecutive SNP calls as MNP candidates. Once found, the
Strelka2 SNP calls supporting a MNP are converted to a single MNP call. This is done to preserve the
predicted gene model as accurately as possible in our consensus calls. Consensus SNV from all four
callers were collected and by default, calls that were detected in at least two calling algorithms or
marked with “HotSpotAllele” were retained.

For all SNVs, potential non-hotspot germline variants were removed if they had a normal depth <= 7
and gnomAD allele frequency > 0.001. Final results were saved in MAF format.

Somatic Copy Number Variant (CNV) Calling

We called copy number variants for tumor/normal samples using Control-FREEC [12,13] and CNVkit
[14] as described in the OpenPBTA manuscript [1]. We used GATK [15] to call CNVs for matched
tumor/normal WGS samples when there were at least 30 male and 30 female normals from the same
sequencing platform available for panel of normal creation. For tumor only samples, we used Control-
FREEC with the following modi�cations. Instead of the b-allele frequency germline input �le, we used
the dbSNP_v153_ucsc-compatible.converted.vt.decomp.norm.common_snps.vcf.gz
dbSNP common snps �le and to avoid hard-to-call regions, utilized the 
hg38_canonical_150.mappability  mappability �le. Both are also linked in the public Kids First

references CAVATICA project. The Control-FREEC tumor only work�ow can be found here.

Somatic Structural Variant Calling (WGS samples only)

We called structural variants (SVs) using Manta [16], restricting analysis to the same regions utilized by
Strelka2. We annotated SVs using AnnotSV [17].

Gene Expression

The tumor-normal-differential-expression  module performs di�erential expression analyses
for all sets of Disease ( cancer_group ) and Dataset ( cohort ) across all genes found in the gene-
expression-rsem-tpm-collapsed.rds  table. The purpose of this analysis is to highlight the
correlation and understand the variability in gene expression in di�erent cancer conditions across
di�erent histological tissues. For OpenPedCan v12 data release, this module performs expression
analysis over 102 cancer groups across 52 histological tissues for all 54,346 genes found in the
dataset. This analysis was performed on the Children’s Hospital of Philadelphia HPC and was
con�gured to use 96G of RAM per CPU, with one task (one iteration of expression analysis for each set
of tissue and cancer group) per CPU (total 102x52=5304 CPUs) using the R/DESeq2 package. Please
refer to script run-tumor-normal-differential-expression.sh  in the module for additional
details on Slurm processing con�guration. The same analysis can also be performed on CAVATICA, but
requires further optimization. The module describes the steps for CAVATICA set up, and scripts to
publish an application on the portal. The required data �les are also available publicly on CAVATICA
under the Open Pediatric Cancer (OpenPedCan) Open Access. Refer to the module for detailed
description and scripts.

Abundance Estimation

https://kids-first-seq-data.s3.amazonaws.com/pipeline_references/dbSNP_v153_ucsc-compatible.converted.vt.decomp.norm.common_snps.vcf.gz
https://s3.amazonaws.com/kids-first-seq-data/pipeline_references/hg38_canonical_150.mappability
https://cavatica.sbgenomics.com/u/kfdrc-harmonization/kf-references
https://github.com/kids-first/kf-tumor-workflow/blob/v0.3.0-beta/workflows/kfdrc_controlfreec_tumor_only_wf.cwl
https://github.com/d3b-center/OpenPedCan-analysis/tree/dev/analyses/tumor-normal-differential-expression
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8
https://cavatica.sbgenomics.com/u/cavatica/opentarget/files/#q?path=v12


Among the data sources used for OpenPedCan, GTEx and TCGA used GENCODE v27 and v36,
respectively. Therefore, the gene symbols had to be harmonized to GENCODE v39 for compatibility
with the rest of the dataset. The liftover process was done via a custom script. The script �rst
constructs an object detailing the gene symbol changes from the HGNC symbol database. Using the
symbol-change object, the script updates any columns containing gene symbols. This liftover process
was used on GTEx RNA-Seq, TCGA RNA-Seq, DGD fusions, and DNA hotspot �les.

Additionally, the gene expression matrices had some instances where multiple Ensembl gene
identi�ers mapped to the same gene symbol. This was dealt with by �ltering the expression matrix to
only genes with [FPKM/TPM] > 0 and then selecting the instance of the gene symbol with the
maximum mean [FPKM/TPM/Expected_count] value across samples. This enabled many downstream
modules that require RNA-seq data have gene symbols as unique gene identi�ers. Refer to collapse-
rnaseq module for scripts and details.

Gene fusion detection from RNA-Seq

Gene fusions were called using Arriba [18] and STAR-Fusion [19] as previously reported in OpenPBTA
[1]. We updated the annoFuseData  R package to liftover gene symbols to be concordant with VEP
v105. Fusions are now �ltered with annoFuse [20] upstream and released in fusion-
annoFuse.tsv.gz .

Gene fusion detection from fusion panels (DGD only)

Clinical RNA fusion calls from the CHOP DGD fusion panel are included in the data release in the 
fusion-dgd.tsv.gz  �le.

Splicing quanti�cation

To detect alternative splicing events, we utilized rMATS turbo (v. 4.1.0) with Ensembl/GENCODE v39
GFF annotations using the Kids First RNA-Seq work�ow. We used --variable-read-length  and -
t paired  options and applied an additional �lter to include only splicing events with total junction
read counts greater than 10. The OpenPedCan data release �le splice-events-rmats.tsv.gz
contains predicted single exon (SE), alternative 5’ splice site (A5SS), alternative 3’ splice site (A3SS), and
retained intron (RI) events. These are made available for the community, but were not yet used in
OpenPedCan analysis modules.

Proteomics data integration

CPTAC PBTA, CPTAC GBM, and HOPE proteogenomics

The following methods are the general proteomics approaches used for the CPTAC PBTA [5], CPTAC
GBM [6], and HOPE (pre-publication, correspondence with Dr. Pei Wang) studies. For speci�c
descriptions of sample preparation, mass spectrometry instrumentation and approaches, and data
generation, processing, or analysis please refer to the relevant publications.

TMT-11 Labeling and Phosphopeptide Enrichment

Proteome and phosphoproteome analysis of brain cancer samples in the CPTAC PBTA (pediatric),
CPTAC GBM (adult), and HOPE (adolescent and young adult, AYA) cohort studies were structured as
TMT11-plex experiments. Tumor samples were digested with LysC and trypsin. Digested peptides
were labeled with TMT11-plex reagent and prepared for phosphopeptide enrichment. For each
dataset, a common reference sample was compiled from representative samples within the cohort.

https://github.com/d3b-center/D3b-DGD-Collaboration/blob/main/scripts/update_gene_symbols.py
https://https//ftp.ebi.ac.uk/pub/databases/genenames/hgnc/archive/monthly/tsv/hgnc_complete_set_2021-06-01.txt
https://github.com/d3b-center/OpenPedCan-analysis/tree/dev/analyses/collapse-rnaseq
https://github.com/d3b-center/annoFusedata
https://www.testmenu.com/chop/Tests/785504
https://github.com/kids-first/kf-rnaseq-workflow/blob/master/workflow/rmats_wf.cwl


Phosphopeptides were enriched using Immobilized Metal A�nity Chromatography (IMAC) with Fe3+-
NTA-agarose bead kits.

Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) Analysis

To reduce sample complexity, peptide samples were separated by high pH reversed phase HPLC
fractionation. For CPTAC PBTA a total of 96 fractions were consolidated into 12 �nal fractions for LC-
MS/MS analysis. For CPTAC GBM and HOPE cohorts a total of 96 fractions were consolidated into 24
fractions. For CPTAC PBTA, global proteome mass spectrometry analyses were performed on an
Orbitrap Fusion Tribrid Mass Spectrometer and phosphoproteome analyses were performed on an
Orbitrap Fusion Lumos Tribrid Mass Spectrometer. For CPTAC GBM and HOPE studies, mass
spectrometry analysis was performed using an Orbitrap Fusion Lumos Mass Spectrometer.

Protein Identi�cation

The CPTAC PBTA spectra data were analyzed with MSFragger version 20190628 [21] searching against
a CPTAC harmonized RefSeq-based sequence database containing 41,457 proteins mapped to the
human reference genome (GRCh38/hg38) obtained via the UCSC Table Browser on June 29, 2018, with
the addition of 13 proteins encoded in the human mitochondrial genome, 264 common laboratory
contaminant proteins, and an equal number of decoy sequences. The CPTAC GBM and HOPE spectra
data were analyzed with MS-GF+ v9881 [22,23,24] searching against the RefSeq human protein
sequence database downloaded on June 29, 2018 (hg38; 41,734 proteins), combined with 264
contaminants, and a decoy database composed of the forward and reversed protein sequences.

Protein Quanti�cation and Data Analysis

Relative protein (gene) abundance was calculated as the ratio of sample abundance to reference
abundance using the summed reporter ion intensities from peptides mapped to the respective gene.
For phosphoproteomic datasets, data were not summarized by protein but left at the phosphopeptide
level. Global normalization was performed on the gene-level abundance matrix (log2 ratio) for global
proteomic and on the site-level abundance matrix (log2 ratio) for phosphoproteomic data. The
median, log2 relative protein or peptide abundance for each sample was calculated and used to
normalize each sample to achieve a common median of 0. To identify TMT outliers, inter-TMT t-tests
were performed for each individual protein or phosphopeptide. Batch e�ects were checked using the
log2 relative protein or phosphopeptide abundance and corrected using the Combat algorithm [25].
Imputation was performed after batch e�ect correction for proteins or phosphopeptides with a
missing rate < 50%. For the phosphopeptide datasets, 440 markers associated with cold-regulated
ischemia genes were �ltered and removed.

Creation of OpenPedCan Analysis modules

A list of all modules, repository links, one line description, input, and output �les can be found in
Supplemental Table 2.

Methylation Analysis

Methylation array preprocessing

We preprocessed raw Illumina 450K and EPIC 850K In�nium Human Methylation Bead Array
intensities using the array preprocessing methods implemented in the minfi Bioconductor 
package  [26]. We utilized either preprocessFunnorm  when an array dataset had both tumor and
normal samples or multiple OpenPedCan-de�ned cancer_groups  and preprocessQuantile

https://github.com/d3b-center/OpenPedCan-analysis/blob/b7b51c5e2b0a91f67cf2c86da7f0b6932878a370/tables/results/SuppTable2-Modules.xlsx


when an array dataset had only tumor samples from a single OpenPedCan-de�ned cancer_group
to estimate usable methylation measurements ( beta-values  and m-values ) and copy number
( cn-values ). Some Illumina In�nium array probes targeting CpG loci contain single-nucleotide
polymorphisms (SNPs) near or within the probe [27], which could a�ect DNA methylation
measurements [28]. As the min� preprocessing work�ow recommends, we dropped probes
containing common SNPs in dbSNP (minor allele frequency > 1%) at the CpG interrogation or the
single nucleotide extensions.

Details of methylation array preprocessing are available in the OpenPedCan methylation-
preprocessing module.

Methylation classi�cation of brain tumor molecular subtypes

The Clinical Methylation Unit Laboratory of Pathology at the National Cancer Institute Center for
Cancer Research ran the DKFZ brain classi�er version 12.6, a comprehensive DNA methylation-based
classi�cation of CNS tumors across all entities and age groups [29] and/or the NIH Bethesda Brain
tumor classi�er v2.0 (NIH_v2) and the combo reporter pipeline v2.0 on docker container
trust1/bethesda:latest. Unprocessed IDAT-�les from the Children’s Brain Tumor Network (CBTN) 
Infinium Human Methylation EPIC (850k) BeadChip arrays  were used as input and the

following information was compiled into the histologies.tsv  �le: 
dkfz_v12_methylation_subclass  (predicted methylation subtype), 
dkfz_v12_methylation_subclass_score  (classi�cation score), 
dkfz_v12_methylation_mgmt_status  (MGMT methylation status), 
dkfz_v12_methylation_mgmt_estimated  (estimated MGMT methylation fraction), 
NIH_v2_methylation_Superfamily , NIH_v2_methylation_Superfamily_mean_score , 
NIH_v2_methylation_Superfamily_Consistency_score , NIH_v2_methylation_Class , 
NIH_v2_methylation_Class_mean_score , 
NIH_v2_methylation_Class_consistency_score , 
NIH_v2_methylation_Superfamily_match , and NIH_v2_methylation_Class_match .

Gene Set Variation Analysis ( gene-set-enrichment-analysis  analysis
module)

We performed Gene Set Variation Analysis (GSVA) for the Hallmark gene sets from MSigDB [30] on
log2-transformed, gene-collapsed RSEM TPM expression values from RNA-Seq using the GSVA
package from Bioconductor [31]. GSVA was performed separately by RNA library type to avoid batch
e�ects.

Fusion prioritization ( fusion_filtering  analysis module)

The fusion_filtering  module �lters artifacts and annotates fusion calls, with prioritization for
oncogenic fusions, for the fusion calls from STAR-Fusion and Arriba. After artifact �ltering, fusions
were prioritized and annotated as “putative oncogenic fusions” when at least one gene was a known
kinase, oncogene, tumor suppressor, curated transcription factor, on the COSMIC Cancer Gene
Census List, or observed in TCGA. Fusions were retained in this module if they were called by both
callers, recurrent or speci�c to a cancer group, or annotated as a putative oncogenic fusion. Please
refer to the module linked above for more detailed documentation and scripts.

Consensus CNV Calling (WGS samples only)
( copy_number_consensus_call*  analysis modules)

https://github.com/d3b-center/OpenPedCan-analysis/tree/dev/analyses/methylation-preprocessing
https://www.molecularneuropathology.org/mnp/classifiers/11
https://cbtn.org/
https://github.com/d3b-center/OpenPedCan-analysis/tree/dev/analyses/fusion_filtering


We adopted the consensus CNV calling described in OpenPBTA manuscript [1] with minor
adjustments. For each caller and sample with WGS performed, we called CNVs based on consensus
among Control-FREEC [12,13], CNVkit [14], and GATK [15]. Sample and consensus caller �les with
more than 2,500 CNVs were removed to de-noise and increase data quality, based on cuto�s used in
GISTIC [32]. For each sample, we included the following regions in the �nal consensus set: 1) regions
with reciprocal overlap of 50% or more between at least two of the callers; 2) smaller CNV regions in
which more than 90% of regions were covered by another caller. For GATK, if a panel of normal was
not able to be created (required 30 male and 30 female with the same sequencing platform),
consensus was run for that tumor using Control-FREEC, CNVkit, and MantaSV. We de�ned copy
number as NA for any regions that had a neutral call for the samples included in the consensus �le.
We merged CNV regions within 10,000 bp of each other with the same direction of gain or loss into
single region.

Any CNVs that overlapped 50% or more with immunoglobulin, telomeric, centromeric, segment
duplicated regions, or that were shorter than 3000 bp were �ltered out. The CNVKit calls for WXS
samples were appended to the consensus CNV �le.

Focal Copy Number Calling ( focal-cn-file-preparation  analysis
module)

Please refer to the OpenPBTA manuscript for details on assignment of copy number status values to
CNV segments, cytobands, and genes [1]. We applied criteria to resolve instances of multiple
con�icting status calls for the same gene and sample, which are described in detail in the focal-cn-�le-
preparation module. Brie�y, we prioritized 1) non-neutral status calls, 2) calls made from dominant
segments with respect to gene overlap, and 3) ampli�cation and deep deletion status calls over gain
and loss calls, respectively, when selecting a dominant status call per gene and sample. These
methods resolved >99% of duplicated gene-level status calls.

Mutational Signatures ( mutational-signatures  analysis module)

We obtained mutational signature weights (i.e., exposures) from consensus SNVs using the
deconstructSigs R package [33]. We estimated weights for single- and double-base substitution (SBS
and DBS, respectively) signatures from the Catalogue of Somatic Mutations in Cancer (COSMIC)
database versions 2 and 3.3, as well as SBS signatures from Alexandrov et al. 2013 [34]. The following
COSMIC SBS signatures were excluded from weight estimation in all tumors: 1) sequencing artifact
signatures, 2) signatures associated with environmental exposure, and 3) signatures with an unknown
etiology. Additionally, we excluded therapy-associated signatures from mutational signature weight
estimation in tumors collected prior to treatment (i.e. “Initial CNS Tumor” or “Primary Tumor”).

Tumor Mutation Burden [TMB] ( tmb-calculation  analysis module)

Recent clinical studies have associated high TMB with improved patient response rates and survival
bene�t from immune checkpoint inhibitors [35].

The Tumor Mutation Burden (TMB) tmb-calculation  module was adapted from the snv-
callers  module of the OpenPBTA project [1]. Here, we use mutations in the snv-consensus-
plus-hotspots.maf.tsv.gz  �le which is generated using Kids First DRC Consensus Calling
Work�ow and is included in the OpenPedCan data download. The consensus MAF contains SNVs or
MNVs called in at least 2 of the 4 callers (Mutect2, Strelka2, Lancet, and Vardict) plus hotspot
mutations if called in 1 of the 4 callers. We calculated TMB for tumor samples sequenced with either
WGS or WXS. Brie�y, we split the SNV consensus MAF into SNVs and multinucleotide variants (MNVs).
We split the MNV subset into SNV calls, merged those back with the SNVs subset, and then removed

https://github.com/d3b-center/OpenPedCan-analysis/tree/dev/analyses/focal-cn-file-preparation
https://github.com/d3b-center/OpenPedCan-analysis/tree/dev/analyses/tmb-calculation
https://github.com/AlexsLemonade/OpenPBTA-analysis/tree/master/analyses/snv-callers
https://github.com/kids-first/kf-somatic-workflow/blob/master/docs/kfdrc-consensus-calling.md


sample-speci�c redundant calls. The resulting merged and non-redundant SNV consensus calls were
used as input for the TMB calculation. We tallied only nonsynonymous variants with classi�cations of
high/moderate consequence (“Missense_Mutation”, “Frame_Shift_Del”, “In_Frame_Ins”,
“Frame_Shift_Ins”, “Splice_Site”, “Nonsense_Mutation”, “In_Frame_Del”, “Nonstop_Mutation”, and
“Translation_Start_Site”) for the numerator. All BED �les are provided in the data release.

All mutation TMB

For WGS samples, we calculated the size of the genome covered as the intersection of Strelka2 and
Mutect2’s e�ectively surveyed areas, regions common to all variant callers, and used this as the
denominator. WGS_all_mutations_TMB = (total # mutations in consensus MAF) / 
intersection_strelka_mutect_vardict_genome_size  For WXS samples, we used the size of
the WXS bed region �le as the denominator. WXS_all_mutations_TMB = (total # mutations 
in consensus MAF)) / wxs_genome_size

Coding only TMB

We generated coding only TMB from the consensus MAF as well. We calculated the intersection for
Strelka2 and Mutect2 surveyed regions using the coding sequence ranges in the GENCODE v39 gtf
supplied in the OpenPedCan data download. We removed SNVs outside of these coding sequences
prior to implementing the TMB calculation below: WGS_coding_only_TMB = (total # coding 
mutations in consensus MAF) / 
intersection_wgs_strelka_mutect_vardict_CDS_genome_size  For WXS samples, we
intersected each WXS bed region �le with the GENCODE v39 coding sequence, sum only variants
within this region for the numerator, and calculate the size of this region as the denominator. 
WXS_coding_only_TMB = (total # coding mutations in consensus MAF) / 
intersection_wxs_CDS_genome_size

Finally, we include an option ( nonsynfilter_focr ) to use speci�c nonsynonymous mutation
variant classi�cations recommended from the TMB Harmonization Project.

Molecular Subtyping

Here, we build upon the molecular subtyping performed in OpenPBTA [1] to align with WHO 2021
subtypes [36]. Molecular subtypes were generated per tumor event and are listed for each
biospecimen in Supplemental Table 1, with the number of tumors grouped by broad histology and
molecular subtype in Supplemental Table 3.

High-grade gliomas

High-grade gliomas (HGG) were categorized based on a combination of clinical information, molecular
features, and DNA methylation data. H3 K28-altered di�use midline gliomas (DMG) were classi�ed
based on the presence of a p.K28M or p.K28I mutation in H3F3A, HIST1H3B, HIST1H3C, or HIST2H3C,
or a high-con�dence DKFZ methylation score (>=0.8) in the appropriate subclass. Oligodendroglioma,
IDH-mutant tumors were classi�ed based on high-con�dence “O_IDH” methylation classi�cations, and
oligosarcoma, IDH-mutant tumors were de�ned as those with high-con�dence “OLIGOSARC_IDH”
methylation classi�cations. Pleomorphic xanthoastrocytomas (PXA) were classi�ed using the following
criteria: 1) methylation subtype is high-con�dence “PXA” or pathology_free_text_diagnosis
contains “pleomorphic xanthoastrocytoma” or “pxa”, and 2) tumor contains a BRAF V600E mutation
and a CDKN2A or CDKN2B homozygous deletion. Methylation classi�cations were used in classifying
the following subtypes:

https://friendsofcancerresearch.org/tmb/
https://github.com/d3b-center/OpenPedCan-analysis/blob/b7b51c5e2b0a91f67cf2c86da7f0b6932878a370/tables/results/SuppTable1-Histologies.xlsx
https://github.com/d3b-center/OpenPedCan-analysis/blob/b7b51c5e2b0a91f67cf2c86da7f0b6932878a370/tables/results/SuppTable3-Molecular-Subtype-Table.xlsx


1. DHG, H3 G35 (“DHG_G34” and “GBM_G34” classi�cations)
2. HGG, IDH (“A_IDH_HG” and “GBM_IDH” classi�cations)
3. HGG, H3 wild type (methylation classi�cation contains “GBM_MES”, “GBM_RTK”, “HGG_”, “HGAP”,

“AAP”, or “ped_”)

A new high-grade glioma entity called infant-type hemispheric gliomas (IHGs), characterized by distinct
gene fusions enriched in receptor tyrosine kinase (RTK) genes including ALK, NTRK1/2/3, ROS1 or MET,
was identi�ed in 2021 [37]. To identify IHG tumors, �rst, tumors which were classi�ed as “IHG” by the
DKFZ methylation classi�er or diagnosed as “infant type hemispheric glioma” from 
pathology_free_text_diagnosis  were selected [29]. Then, the corresponding tumor RNA-seq

data were utilized to seek the evidence for RTK gene fusion. Based on the speci�c RTK gene fusion
present in the samples, IHGs were further classi�ed as “IHG, ALK-altered”, “IHG, NTRK-altered”, “IHG,
ROS1-altered”, or “IHG, MET-altered”. If no fusion was observed, the samples were identi�ed as “IHG,
To be classi�ed”.

Atypical teratoid rhabdoid tumors

Atypical teratoid rhabdoid tumors (ATRT) tumors were categorized into three subtypes: “ATRT, MYC”,
“ATRT, SHH”, and “ATRT, TYR” [38]. In OpenPedCan, the molecular subtyping of ATRT was based solely
on the DNA methylation data. Brie�y, ATRT samples with a high con�dence DKFZ methylation subclass
score (>= 0.8) were selected and subtypes were assigned based on the DKFZ methylation subclass
[29]. Samples with low con�dence DKFZ methylation subclass scores (< 0.8) were identi�ed as “ATRT,
To be classi�ed”.

Neuroblastoma tumors

Neuroblastoma (NBL) tumors with a pathology diagnosis of neuroblastoma, ganglioneuroblastoma, or
ganglioneuroma were subtyped based on their MYCN copy number status as either “NBL, MYCN
ampli�ed” or “NBL, MYCN non-ampli�ed”. If pathology_free_text_diagnosis  was “NBL, MYCN
non-ampli�ed” and the genetic data suggested MYCN ampli�cation, the samples were subtyped as
“NBL, MYCN ampli�ed”. On the other hand, if pathology_free_text_diagnosis  was “NBL, MYCN
ampli�ed” and the genetic data suggested MYCN non-ampli�cation, the RNA-Seq gene expression
level of MYCN was used as a prediction indicator. In those cases, samples with MYCN gene expression
above or below the cuto� (TPM >= 140.83 based on visual inspection of MYCN CNV status) were
subtyped as “NBL, MYCN ampli�ed” and “NBL, MYCN non-ampli�ed”, respectively. MYCN gene
expression was also used to subtype samples without DNA sequencing data. If a sample did not �t
none of these situations, it was denoted as “NBL, To be classi�ed”.

Craniopharyngiomas

In addition to molecular criteria established in OpenPBTA [1], craniopharyngiomas (CRANIO) are now
subtyped using DNA methylation classi�ers. Craniopharyngiomas with a high-con�dence methylation
subclass containing “CPH_PAP” were classi�ed as papillary (CRANIO, PAP), and those with high-
con�dence methylation subclass containing “CPH_ADM” were classi�ed as adamantinomatous
(CRANIO, ADAM), respectively.

Ependymomas

Ependymomas (EPN) are subtyped using the following criteria:

1. Any spinal tumor with MYCN ampli�cation or with a high-con�dence “EPN, SP-MYCN” methylation
classi�cation was subtyped as EPN, spinal and MYCN-ampli�ed (SP-MYCN).



2. EPN tumors containing one or more gene fusions of YAP1::MAMLD1, YAP1::MAML2, or
YAP1::FAM118B, or else had a high-con�dence “EPN, ST YAP1” methylation classi�cation were
subtyped as EPN, ST YAP1.

3. EPN tumors containing one or more gene fusions of ZFTA::RELA or ZFTA::MAML2, or else had a
high-con�dence “EPN, ST ZFTA” methylation classi�cation were subtyped as EPN, ST ZFTA. This
re�ects an update to WHO classi�cations that now characterizes this subtype based on ZFTA
fusions rather than RELA fusions.

4. EPN tumors with 1) chromosome 1q gain and TKTL1 over-expression, or 2) EZHIP over-expression,
or 3) posterior fossa anatomical location and a histone H3 K28 mutation in H3F3A, HIST1H3B,
HIST1H3C, or HIST2H3C, or 4) a high-con�dence “EPN, PF A” methylation classi�cation were
subtyped as posterior fossa group A ependymomas (EPN, PF A).

5. Tumors with 1) chr 6p or 6q loss and GPBP1 or IFT46 over-expression, or 2) a high-con�dence “EPN,
PF B” methylation classi�cation were subtyped as posterior fossa group B ependymomas (EPN, PF
B).

6. EPN tumors with a high-con�dence “EPN, MPE” methylation classi�cation were subtyped as
myxopapillary ependymomas (EPN, MPE).

7. EPN tumors with a high-con�dence “EPN, PF SE” methylation classi�cation were subtyped as
posterior fossa subependymomas (EPN, PF SE).

8. EPN tumors with a high-con�dence “EPN, SP SE” methylation classi�cation were subtyped as spinal
subependymomas (EPN, SP SE).

9. EPN tumors with a high-con�dence “EPN, SP” methylation classi�cation were subtyped as spinal
ependymomas (EPN, SP).

10. All other EPN tumors were classi�ed as “EPN, To be classi�ed”.

Low-grade gliomas

In addition to subtyping methods described in OpenPBTA [1], high-con�dence methylation
classi�cations are now used in classifying the following low-grade glioma (LGG) subtypes:

1. LGG, other MAPK-altered (methylation subclass “PA_MID” or “PLNTY”)
2. LGG, FGFR-altered (methylation subclass “PA_INF_FGFR”)
3. LGG, IDH-altered (methylation subclass “A_IDH_LG”)
4. LGG, MYB/MYBL1 fusion (methylation subclass “AG_MYB” or “LGG_MYB”)
5. LGG, MAPK-altered (methylation subclass “LGG, MAPK”)
6. LGG, BRAF- and MAPK-altered (methylation subclass “LGG, BRAF/MAPK”)
7. SEGA, to be classi�ed (methylation subclass “SEGA, To be classi�ed”)

Medulloblastomas (MBs) In addition to our previous work classifying MB tumors into the four major
subtypes (WNT, SHH, Group 3, and Group 4) using the transcriptomic MedulloClassi�er [39], we
integrated high-con�dence methylation classi�cation, demographic, and molecular criteria to
molecularly subtype SHH tumors into one of four subgroups (alpha, beta, gamma, or delta) (Figure 3).



Figure 3:  Medulloblastoma Sample Clustering. A, UMAP projection of 271 MB tumors and B, 63 SHH-activated MB
tumors using methylation beta values of the 20,000 most variable probes from the In�nium MethylationEPIC array. C,
UMAP projection of MB, SHH activated samples indicating copy number status of SHH subgroup known somatic driver
genes CCND2, GLI2, MYCN, and PTEN.

We implemented molecular subtyping as follows:

1. MB tumors with methylation classi�cation that contains “MB_SHH” are subtyped as SHH-activated
medulloblastoma (MB, SHH)

2. MB tumors with “MB_G34_I”, “MB_G34_II”, “MB_G34_III”, and “MB_G334_IV” methylation
classi�cations are subtyped as medulloblastoma group 3 (MB, Group3)

3. MB tumors with “MB_G34_V”, “MB_G34_VI”, “MB_G34_VII”, and “MB_G334_VIII” methylation
classi�cations are subtyped as medulloblastoma group 4 (MB, Group4)

4. MB tumors with “MB_WNT” methylation classi�cation are subtyped as WNT-activated MB (MB,
WNT)

5. MB tumors with “MB_MYO” methylation classi�cation are subtyped as medulloblastomas with
myogenic di�erentiation (MB, MYO)

We classi�ed MB, SHH subtype tumors using the following criteria:

1. MB, SHH alpha: sample has a high-con�dence “MB_SHH_3” methylation classi�cation, or patient
had an age at diagnosis >= 2 years and harbored one of the following molecular alterations in
tumor or germline:

MYCN, GLI2, or CCND2 ampli�cation or sample TPM z-score >= 2 in tumor.
A pathogenic or likely pathogenic germline variant in ELP1 or TP53.



A TP53 hotspot mutation in tumor.
Chromosome 9p gain or chromosome 17p loss in tumor.

2. MB, SHH beta: sample has a high-con�dence “MB_SHH_1” methylation classi�cation, or patient had
an age at diagnosis < 5 years and harbored one of the following molecular alterations:

A KMT2D loss of function variant.
PTEN copy number loss or deep deletion, or sample TPM z-score < -2.
Chromosome 2p or 2q gain.

3. MB, SHH gamma: sample has a high-con�dence “MB_SHH_2” methylation classi�cation, or patient
had an age at diagnosis < 5 years and tumor harbored a chromosome 2p arm gain.

4. MB, SHH delta: sample has a high-con�dence “MB_SHH_4” methylation classi�cation, or patient had
an age at diagnosis >= 10 years and harbored one of the following molecular alterations in tumor:

a DDX3X or SMO loss-of-function mutation.
a hotspot TERT or U1 snRNA gene mutation.
Chromosome 14q arm loss.

Pineoblastomas

Pineoblastomas (PB) are classi�ed as follows using high-con�dence methylation classi�cations:

1. Pineoblastoma, MYC/FOXR2-activated (“PB_FOXR2” methylation classi�cation)
2. Pineoblastoma, RB1-altered (“PB_RB1” methylation classi�cation)
3. Pineoblastoma, group 1 (“PB_GRP1A” and “PB_GRP1B” methylation classi�cations)
4. Pineoblastoma, group 2 (“PB_GRP2” methylation classi�cation)
5. All other pineoblastomas were classi�ed as “PB, To be classi�ed”

non-MB, non-ATRT Embryonal Tumors

Updates were made to non-MB, non-ATRT embryonal tumor subtyping as follows:

1. Embryonal tumors with multilayered rosettes and C19MC-altered (ETMR, C19MC-altered) were
classi�ed based on 1) high-con�dence “ETMR_C19MC” methylation classi�cation or 2) TTYH1 gene
fusion and either chromosome 19 ampli�cation or LIN28A over-expression.

2. ETMR, not otherwise speci�ed (NOS) were classi�ed based on LIN28A over-expression and no
TTYH1 gene fusion.

TP53 Alteration Annotation ( tp53_nf1_score  analysis module)

We classi�ed TP53-altered high-grade glioma (HGG) samples as either TP53 lost or TP53 activated and
incorporated these annotations into the molecular subtype framework. To support this classi�cation,
we used a previously published RNA-based TP53 inactivation signature originally developed using
TCGA pan-cancer cohorts [40]. We applied this to OpenPedCan RNA-seq data, strati�ed by library
preparation type. This classi�er was used in combination with genomic variant data, including
consensus SNVs, CNVs, and structural variants (SVs), as well as curated reference databases
cataloging somatic TP53 hotspot mutations [41,42] and known functional domains [43] to annotate
lost or activated status. Brie�y, samples were annotated as TP53 activated if they harbored either of
two known gain-of-function mutations: p.R273C or p.R248W [44]. Samples were assigned TP53 lost
status under any of the following conditions: (i) presence of a hotspot TP53 mutation listed in the IARC
or MSKCC databases; (ii) detection of two distinct TP53 alterations (e.g., SNV, CNV, or SV) consistent



with biallelic inactivation; (iii) presence of a single somatic TP53 variant or a pathogenic germline
variant associated with Li-Fraumeni syndrome (LFS) [45]; or (iv) presence of a germline TP53 variant
linked to LFS alongside a TP53 inactivation classi�er score >0.5 from matched RNA-seq data.

Clinical data harmonization

To remain consistent with the Kids First data model and our previous OpenPBTA study [1], all clinical
metadata was harmonized using the same data model. TARGET and TCGA metadata �elds (e.g., 
sample_type , composition , tumor_descriptor , etc.) were harmonized to those of Kids First.

Additional histology-related �elds were created through OpenPedCan, following molecular subtyping: 
integrated_diagnosis , harmonized_diagnosis , and cancer_group . These �elds were

expanded from our previous study, to utilize the WHO 2021 CNS tumor classi�cations[36]. Any
samples with molecular subtypes which did not match the initial pathology_diagnosis  were
reviewed with a board-certi�ed molecular pathologist and updated accordingly.

EFO, MONDO, and NCIT Mapping

We created a script to search ontology mappings by cancer_group . The efo_code  represents the
Experimental Factor Ontology (EFO) description available in European Bioinformatics Institute
database, the mondo_code  represents the Mondo Disease Ontology (MONDO) from an independent
resource that aims to harmonize disease de�nitions, and the ncit_code  represents the NCI
Thesaurus (NCIt) reference terminology. Codes were automatically pulled based on text matching,
manually reviewed, and can be found in Supplemental Table 1

Selection of independent samples ( independent-samples  analysis module)

For analyses that require all input biospecimens to be independent, we use the OpenPedCan-analysis
independent-samples module to select only one biospecimen from each input participant. For each
input participant of an analysis, the independent biospecimen is selected based on the analysis-
speci�c �lters and preferences for the biospecimen metadata, such as experimental strategy, cancer
group, and tumor descriptor.

Data Validation and Quality Control

All RNA-seq and WGS samples passed minimum quality thresholds, including ≥20 million total reads
and ≥50% alignment for RNA-Seq, and ≥20X mean coverage for DNA sequencing Supplemental Table
4. Sample identity was con�rmed using NGSCheckMate [46] and Somalier relate [47] to detect and
exclude mismatched or contaminated samples.

We expanded upon the molecular subtyping modules from OpenPBTA to recover hallmark genomic
and transcriptomic features known in pediatric tumors. These include: KIAA1549::BRAF fusions in low-
grade gliomas, H3 K28M/I mutations in di�use midline gliomas, H3 G35R/V mutations in di�use
hemispheric gliomas, somatic TP53 mutations in high-grade gliomas, and MYCN ampli�cation in
neuroblastoma, for example.

All subtyping modules are version-controlled, containerized, and publicly available, and have
undergone internal code review and validation by independent analysts. Where molecular features
con�icted with original pathology labels, cases were reviewed with board-certi�ed molecular
pathologists, and integrated diagnoses were updated accordingly. This collaborative re-review process
led to improved sample annotation and is fully documented in the molecular-subtype-pathology
module.

https://github.com/d3b-center/OpenPedCan-analysis/blob/b7b51c5e2b0a91f67cf2c86da7f0b6932878a370/tables/results/SuppTable1-Histologies.xlsx
https://github.com/d3b-center/OpenPedCan-analysis/tree/d397339d567ddeff17e7a8cdca892f6a9dd2a0ba/analyses/independent-samples
https://github.com/d3b-center/OpenPedCan-analysis/blob/b7b51c5e2b0a91f67cf2c86da7f0b6932878a370/tables/results/SuppTable4-dna-rna-qc.xlsx


To assess concordance between data types, we compared RNA-based and methylation-based
molecular subtypes in medulloblastoma. As shown in [Table 1], we observed nearly 100%
concordance, validating both experimental modalities and classi�er accuracy. Notably, methylation
classi�cation identi�ed one rare case (MB, MYO) not captured by the transcriptome-based
MedulloClassi�er.

Table 1:  Medulloblastoma subtype concordance across experimental strategies. Comparison of medulloblastoma
subtypes using methylation or RNA-Seq classi�cation.

Methylation Subtype Group3 (RNA-Seq) Group4 (RNA-Seq) SHH (RNA-Seq) WNT (RNA-Seq)

MB_G34_II 8 0 0 0

MB_G34_III 17 0 0 0

MB_G34_IV 8 0 0 0

MB_G34_V 0 6 0 0

MB_G34_VI 0 4 0 0

MB_G34_VII 0 30 0 0

MB_G34_VIII 0 34 0 0

MB_MYO 1 0 0 0

MB_SHH_1 0 0 11 0

MB_SHH_2 0 0 4 0

MB_SHH_3 0 0 2 0

MB_SHH_4 0 0 7 0

MB_WNT 0 0 0 18

In addition to verifying known �ndings, OpenPedCan modules support pediatric cancer discovery and
translation. The reproducibility of these results is further supported by their reuse across studies, >
100 Zenodo downloads, GitHub forks, and independent analysis pipelines. Together, these validation
measures—spanning sample QC, molecular feature recovery, cross-platform concordance, and expert
review—ensure that OpenPedCan is a robust, reproducible, and reusable resource for the pediatric
cancer research community.

Ethics and Consent Statement

This study did not generate new sequencing data. All previously-published raw data were obtained
through Database of Genotypes and Phenotypes (dbGAP) access requests with patients consented as
“General Research Use (GRU)” or “Disease-Speci�c (Pediatric Cancer Research)”. OpenPedCan
integrates only summary-level outputs (e.g., gene expression matrices, mutation calls) that are
designated for GRU by the data custodians. No protected health information (PHI), raw sequencing
�les, or individually identi�able clinical metadata are distributed as part of this project.

Re-use potential

OpenPedCan represents a valuable resource, not only by signi�cantly extending OpenPBTA to include
more than 5,000 additional patients and 6,000 tumors, but also by adding a number of new “omic”
data types not previously included, such as methylation arrays, miRNA-Seq, proteomics, and normal
tissue RNA-Seq. OpenPedCan also serves as a community resource whose outputs and/or code can be



leveraged directly to ask research questions or serve as an orthogonal validation dataset. By providing
this data in a harmonized manner, we enable investigators to reduce the �nancial and time-related
costs associated with their analyses, which would otherwise total years of project hours and over
$50,000 in data analysis alone [48]. We encourage re-use of the data, ideas and suggestions for
improving the data or adding analyses, and/or direct code contributions through a pull-request.

Availability of source code and requirements

Project name: The Open Pediatric Cancer (OpenPedCan) Project

Project home page: https://github.com/d3b-center/OpenPedCan-analysis

Archived Source code: https://zenodo.org/records/15750097

Operating system(s): Platform independent

Programming languages: R, Python, bash

Other requirements: CAVATICA is required to run all primary Kids First work�ows. All downstream
OpenPedCan work�ows can be run using the Docker image at pgc-images.sbgenomics.com/d3b-
bixu/openpedcanverse:latest . Most work�ows run e�ciently on local or cloud machines with
16–64 GB RAM. The most memory-intensive module runs on a 64 GB instance at <$2 per run.

License: CC-BY 4.0

Primary analyses were performed using Gabriella Miller Kids First pipelines and are listed in the
methods section. Analysis modules were either initially developed within
https://github.com/AlexsLemonade/OpenPBTA-analysis [1], were modi�ed, and/or created anew
within the https://github.com/d3b-center/OpenPedCan-analysis publicly available repository.

Software versions are documented in Supplemental Table 5.

Data Availability

Datasets

The datasets supporting this study are available as follows: The TARGET dataset is available in dbGAP
under phs000218.v23.p8 [49]. The GMKF Neuroblastoma dataset is available in dbGAP under
phs001436.v1.p1[50]. The Pediatric Brain Tumor Atlas data (PBTA), containing the subcohorts
OpenPBTA, Kids First PBTA (X01), Chordoma Foundation, MI-ONCOSEQ Study, PNOC, and DGD is
available in dbGAP under phs002517.v4.p2 [51] or in the Kids First Portal (kids�rstdrc.org). The raw
Genotype-Tissue Expression (GTEx) dataset is available in dbGAP under phs000424.v9.p2 and publicly
available at https://gtexportal.org/home/. The Cancer Genome Atlas (TCGA) dataset is available in
dbGAP under phs000178.v11.p8 [52].

Merged summary �les for the latest release of OpenPedCan are openly accessible in CAVATICA or via 
download-data.sh  script in the https://github.com/d3b-center/OpenPedCan-analysis repository.

Cancer group summary data from release v11 are visible within the NCI’s pediatric Molecular Targets
Platform. Cohort, cancer group, and individual data are visible within PedcBioPortal. An overview of
the OpenPedCan data availability is summarized in [Table 22].

https://github.com/AlexsLemonade/OpenPBTA-analysis
https://github.com/d3b-center/OpenPedCan-analysis
https://github.com/d3b-center/OpenPedCan-analysis/blob/b7b51c5e2b0a91f67cf2c86da7f0b6932878a370/tables/results/SuppTable5-List_Package_Table.xlsx
https://cavatica.sbgenomics.com/u/cavatica/opentarget
https://github.com/d3b-center/OpenPedCan-analysis
https://moleculartargets.ccdi.cancer.gov/
https://pedcbioportal.kidsfirstdrc.org/study/summary?id=openpedcan_v15


Table 2:  OpenPedCan Data Availability. OpenPedCan data is available on multiple platforms with varying access
requirements.

Platform Data Type Access Type Access Requirement

PedcBioPortal
Individual and summary
somatic data

Query Gmail account

Molecular Targets Platform
Cancer group summary
data

Query Open Access

GitHub Merged summary �les Full access AWS S3 download script

CAVATICA Merged summary �les Full access CAVATICA account

dbGAP - phs002517.v4.p2 Raw data Full access
Access request via
institution
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